References: Addis Ababa, Ethiopia - Maize - 2021

Postharvest loss profiles (PHL profiles) quantify the expected loss – as a percentage – at each point along the postharvest chain. This loss data is collected by reviewing scientific literature and is broken down by crop, type of farm and climate type (based on the Köppen-Geiger climate classification). These profiles provide percentage loss figures for the various crops throughout the value chain under varying conditions and are updated as new research becomes available.

Read more about how APHLIS estimates losses ›

Help us improve APHLIS

We are always looking to improve our postharvest loss estimates. If you know of any interesting studies, or if you have any field data that we could include in our algorithm, please email us on info@aphlis.net

The APHLIS method of estimating losses

Hodges, R., Bernard, M., Rembold, F. (2014). APHLIS – Postharvest cereal losses in Sub-Saharan Africa, their estimation, assessment and reduction. European Commission, JRC Technical reports, 160 pp.

Losses by value chain step

Harvesting/field drying

  • Boxall RA (1998): Grains post-harvest loss assessment in Ethiopia. Final report NRI Report No 2377. Natural Resources Institute, Chatham, UK. pp 44.
  • De Lima C.P.F. (1982): Strengthening the food conservation and crop storage section (Ministry of Agriculture and Co-operatives, Swaziland). (Ministry of Agriculture and Co-operatives, Swaziland). Field documents and final technical report. Project PFL/SWA/002. Rome, FAO.
  • Grolleaud M. (1997): Post-Harvest Losses: Discovering the Full Story. UN Food and Agriculture Organization, Rome, 1997), pp. 34
  • Lars-Ove Jonsson, Kashweka K. (1987): Relationship between drying, harvest and storage losses, production and consumption of maize for a rural household in Zambia. In: Holmes J.C. (editor) Improving food crop production on smal farms in Africa. FAO/SIDA Seminar on increased Food Production through low-cost food crops technology, Harare (Zimbabwe), 2-17 March 1987.
  • Mvumi B.M., Giga D.P., Chiuswa D.V. (1995): The maize (Zea mays L.) post-production practices of smallholder farmers in Zimbabwe: findings from surveys. Journal of Applied Science in Southern Africa 1 (2), 115-130.
  • Odogola W.R., Henriksson R. (1991): Post harvest management and storage of maize. UNDP/OPS Regional Programme, Harare December 1991. (very useful background on post-harvest handling)
  • Silim M.N., Odogola W., Amenet J. (1991): Techncial report of the post havrest loss prevention project 1987-1991. FAO (PFL/UGA/001), pp 131.
  • Vervroegen D., Yehwola F. (1990): Project for the identification of post-production grain losses and training on their eeduction in Wollo Region, Ethiopia. FAO terminal report, Action Programme for the prevention of Food Losses. FAO terminal report, Action Programme for the prevention of Food Losses. United Nations Food and Agricaulture Organisation, pp. 17
  • Singano C. (2008): Singano C. (pers comm.) Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi. Ppers comm. Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi.
  • Egyir I.S., Sarpong D.B., Obeng-Ofori D. (2011): M&E System for post harvest losses (Pilot Study) Policy Planning, Monitoring and Evaluation Directorate, Ministry of Food and Agriculture, Ghana. Final Report. Pp. 106

Further drying

  • Lars-Ove Jonsson, Kashweka K. (1987): Relationship between drying, harvest and storage losses, production and consumption of maize for a rural household in Zambia. In: Holmes J.C. (editor) Improving food crop production on smal farms in Africa. FAO/SIDA Seminar on increased Food Production through low-cost food crops technology, Harare (Zimbabwe), 2-17 March 1987.
  • Odogola W.R., Henriksson R. (1991): Post harvest management and storage of maize. UNDP/OPS Regional Programme, Harare December 1991. (very useful background on post-harvest handling)

Threshing and Shelling

  • Boxall RA (1998): Grains post-harvest loss assessment in Ethiopia. Final report NRI Report No 2377. Natural Resources Institute, Chatham, UK. pp 44.
  • Grolleaud M. (1997): Post-Harvest Losses: Discovering the Full Story. UN Food and Agriculture Organization, Rome, 1997), pp. 34
  • Mvumi B.M., Giga D.P., Chiuswa D.V. (1995): The maize (Zea mays L.) post-production practices of smallholder farmers in Zimbabwe: findings from surveys. Journal of Applied Science in Southern Africa 1 (2), 115-130.
  • Odogola W.R., Henriksson R. (1991): Post harvest management and storage of maize. UNDP/OPS Regional Programme, Harare December 1991. (very useful background on post-harvest handling)
  • Vervroegen D., Yehwola F. (1990): Project for the identification of post-production grain losses and training on their eeduction in Wollo Region, Ethiopia. FAO terminal report, Action Programme for the prevention of Food Losses. FAO terminal report, Action Programme for the prevention of Food Losses. United Nations Food and Agricaulture Organisation, pp. 17
  • Egyir I.S., Sarpong D.B., Obeng-Ofori D. (2011): M&E System for post harvest losses (Pilot Study) Policy Planning, Monitoring and Evaluation Directorate, Ministry of Food and Agriculture, Ghana. Final Report. Pp. 106

Winnowing

Transport from field

  • Boxall RA (1998): Grains post-harvest loss assessment in Ethiopia. Final report NRI Report No 2377. Natural Resources Institute, Chatham, UK. pp 44.
  • Odogola W.R., Henriksson R. (1991): Post harvest management and storage of maize. UNDP/OPS Regional Programme, Harare December 1991. (very useful background on post-harvest handling)
  • Vervroegen D., Yehwola F. (1990): Project for the identification of post-production grain losses and training on their eeduction in Wollo Region, Ethiopia. FAO terminal report, Action Programme for the prevention of Food Losses. FAO terminal report, Action Programme for the prevention of Food Losses. United Nations Food and Agricaulture Organisation, pp. 17
  • Singano C. (2008): Singano C. (pers comm.) Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi. Ppers comm. Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi.
  • Egyir I.S., Sarpong D.B., Obeng-Ofori D. (2011): M&E System for post harvest losses (Pilot Study) Policy Planning, Monitoring and Evaluation Directorate, Ministry of Food and Agriculture, Ghana. Final Report. Pp. 106

Household-level storage

  • De Lima C.P.F. (1979): The assessment of losses due to insects and rodents in maize stored for subsistence in Kenya. Tropical Stored Products Information 38, pp21-25.
  • Giles P.H. (1986): Post-maturity grain losses in the field. In: Maize Conservation on the farm. Proceedings of a seminar at Kisumu, Kenta 21-23 Janaury 1986. Ministry of Agriculture and Livestock Development, Kenya. pp 1-21.
  • Giles P.H. (1986): Conservation of maize in various farm storage management systems. In: Maize Conservation on the farm. Proceedings of a seminar at Kisumu, Kenta 21-23 Janaury 1986. Ministry of Agriculture and Livestock Development, Kenya. pp 94-113.
  • Golob P., Boag C. (1985): Report on field trials to control Prostephanus truncatus (Horn) (Coleoptera:Bostichidae) in western Tanzania 1983/84 and 1984/85. Project No. A1074. (unpublished)
  • Henkes C. (1992): Investigations into insect population dynamics, damage and losses of stored maize - an approach to IPM in small farms in Tanzania with special reference to Prostephanus truncatus (Horn). GTZ, Pickuben 4, D-2000 Hamburg 11, Germany. pp 124.
  • Hodges R.J. (1983): An outbreak of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in East Africa. Protection Ecology, 5, 1983-194.
  • Nyambo B.T. (1993): Post-harvest maize and sorghum grain losses in tradtional and imporved stores in South Nyanza district, Kenya. International Journal of Pest Management, 39(2) 181-187
  • SSEAD Consultancy (1997): Amhara national Regional State, Bureau of Agriculture, Regional Crop Pest Survey Report on Insect Pests. Addis Ababa (quoted in detail in Boxall 1998)
  • Singano C. (2008): Singano C. (pers comm.) Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi. Ppers comm. Principal Agricultural Research Scientist, Department of Agricultural Research Services, Malawi.

Transport to market

  • Odogola W.R., Henriksson R. (1991): Post harvest management and storage of maize. UNDP/OPS Regional Programme, Harare December 1991. (very useful background on post-harvest handling)
  • Egyir I.S., Sarpong D.B., Obeng-Ofori D. (2011): M&E System for post harvest losses (Pilot Study) Policy Planning, Monitoring and Evaluation Directorate, Ministry of Food and Agriculture, Ghana. Final Report. Pp. 106

Market storage

  • Boxall RA (1998): Grains post-harvest loss assessment in Ethiopia. Final report NRI Report No 2377. Natural Resources Institute, Chatham, UK. pp 44.
  • Egyir I.S., Sarpong D.B., Obeng-Ofori D. (2011): M&E System for post harvest losses (Pilot Study) Policy Planning, Monitoring and Evaluation Directorate, Ministry of Food and Agriculture, Ghana. Final Report. Pp. 106

Nutritional losses

  • FAO, (2010). Fats and fatty acids in human nutrition. Report of an expert consultation. FAO, Food and Nutrition Paper, 91. FAO/WHO, (2007).
  • Joint FAO/WHO scientific update on carbohydrates in human nutrition. European Journal of Clinical Nutrition, Supplement: 09 Nov 2007.
  • Governments of Australia and New Zealand, (2019). Nutrient Reference Values for Australia and New Zealand.
  • Institute of Medicine (IoM), (2005). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, DC: The National Academies Press. 1358 pp. Institute of Medicine (IoM), (2011).
  • Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press. 1132 pp.
  • Nutrition for Developing Countries, (2015). Appendix 1. Tables of energy requirements and recommended intakes of nutrients. Kind, F.S., Burgess, A., Quinn, V.J., Osei, A.K. (Eds). pp 322-326. 3rd edition. Oxford University Press.
  • USAID (undated). STATcompiler: The DHS Program, Demographic and Health Surveys.
  • UNESDA (United Nations Department of Economics and Social Affairs), (2017). World Population Prospects: The 2017 Revision.

Nutritional impact

The calculations for nutritional impact are based on the same studies as nutritional losses above.

Financial impact

Contextual data

See how APHLIS uses contextual data to estimate losses.

List of additional studies used for this data.

Larger grain borer (LGB, Prostephanus truncatus)
  • Boxall, R.A., 2002. Damage and loss caused by the Larger Grain Borer Prostephanus truncatus. Integrated Pest Management Reviews, 7: 105-121.
  • Dick, K., 1989. A review of insect infestation of maize in farm storage in Africa with special reference to the ecology and control of Prostephanus truncatus. Overseas Development Natural Resources Institute, Chatham, UK: Bulletin 18, pp. 42.
  • Dunstan, W.R. & Magazini, I. 1980. Outbreaks and new records. Tanzania. The larger grain borer on stored products. FAO Plant Protection Bulletin. 29:80–81.
  • Golob, P., 2002. Chemical, physical and cultural control of Prostephanus truncatus. Integrated Pest Management Reviews, 7: 245-277.
  • Hodges, R.J., Dunstan, W.R., Magazini, I., Golob, P. 1983. An outbreak of Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in East Nang’ayo, F.L.O., Hill, M.G., Chandi, E.A., Nzeve, N.V. and Obiero, J. The natural environment as a reservoir for the larger grain borer Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) in Kenya. African Crop Science Journal, 1(1): 39–47.
  • Muatinte, B.M., Boukouvala, M., Garcia-Lara, S., Lopez-Castillo, L.M., 2019. The threat of the larger grain borer, Prostephanus truncatus (Coleoptera: Bostrichidae) and practical control options for the pest. CAB Reviews Perspectives in Agriculture Veterinary Science Nutrition and Natural Resources, 14(041): 1-25.
  • Makundi, R.H., Swila, N.N., Misangu, R.N., Reuben, S.W.M., Mwatawala, M., Sikira, A., Kilonzo, B.S., Lyimo, H., et al. 2010. Dynamics of infestation and losses of stored maize due to the larger grain borer (Prostephanus truncatus Horn) and maize weevils (Sitophilus zeamais Motschulsky). Archives of Phytopathology and Plant Protection, 43(14):1346–1355. DOI: 10.1080/03235400802425804.
  • Mlambo, S., Mvumi, B.M., Stathers, T., Mubayiwa, M. & Nyabako, T. 2017. Field efficacy of hermetic and other maize grain storage options under smallholder farmer management. Crop Protection, 98: 198–210. DOI: 10.1016/j.cropro.2017.04.001.
  • Mlambo, S., Mvumi, B.M., Stathers, T., Mubayiwa, M. & Nyabako, T. 2018. Field efficacy and persistence of synthetic pesticidal dusts on stored maize grain under contrasting agro-climatic conditions. Journal of Stored Products Research, 76: 129-139. DOI: 10.1016/j.jspr.2018.01.009.

Data version 2.19.3